If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+3=131
We move all terms to the left:
2w^2+3-(131)=0
We add all the numbers together, and all the variables
2w^2-128=0
a = 2; b = 0; c = -128;
Δ = b2-4ac
Δ = 02-4·2·(-128)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*2}=\frac{-32}{4} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*2}=\frac{32}{4} =8 $
| 5d^2-1=19 | | n^2+6=22 | | 18+3(3+5x)=15x= | | 96=8x^2-96x+256 | | 6.14=-1.3+3.1z | | -h-13-11=10+h | | 12.7x3.5=44.45 | | 63=11/x | | 16.95+14.5b-2.26=8.7b-16.05 | | -5-9v=-v+13v+16 | | (JxJ)+11=36 | | 5x+2=-6+3x+20 | | -13-18z=-20z+7 | | -3.5v-1.32=-3.3v | | 9+x=32-7 | | 6d=17+5d | | 2n+5=21. | | -20-4g=19-16g+9 | | x÷3+x÷4=7 | | 2=3/4n+1 | | 4x+41=153 | | -16w-19=-18w-3 | | 5x3^-10x=74 | | -8-9k=-8k | | -3n=-2n-6 | | 5x+140=30 | | -14+6x=4x2-2 | | -7r-5=5-6r | | 15b+40=5b=120 | | 77+x=131 | | -h+6=-h-6+2h | | -5-4u=2-5u |